Advertisements
Advertisements
Question
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Solution
L.H.S =(1 + cot θ – cosec θ)(1+ tan θ + sec θ)
= `(1 + costheta/sintheta - 1/sin theta)(1+sin theta/cos theta + 1/cos theta)`
`= ((sintheta + costheta - 1)/sintheta)((costheta + sintheta +1)/costheta)`
`= 1/(sinthetacostheta) ((sinthetacostheta+sin^2theta + sin theta+cos^2theta),(+sinthetacostheta+costheta-costheta - sin theta -1))`
`= 1/(sinthetacostheta) (2sinthetacostheta + (sin^2theta + cos^2 theta) - 1)`
`= 1/(sin thetacostheta) (2sinthetacostheta + 1 - 1)`
`= (2sin thetacostheta)/(sin thetacos theta)`
= 2
= R.H.S
APPEARS IN
RELATED QUESTIONS
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
`(1 + cot^2 theta ) sin^2 theta =1`
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
cos4 A − sin4 A is equal to ______.
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Find A if tan 2A = cot (A-24°).
tan θ × `sqrt(1 - sin^2 θ)` is equal to: