(English Medium)
Academic Year: 2017-2018
Date: March 2018
Advertisements
Question 1 to Question 4 is compulsory
Attempt any four questions fromQuestion 5 to Question 11
Find the value of and 'y' if:
`2[(x,y),(9 , (y - 5))] + [(6,4),(-7,5)] = [(10,7),(22,15)]`
Chapter: [0.09] Matrices
Sonia had a recurring deposit account in a bank and deposited Rs. 600 per month for 2 1/2 years. If the rate of interest was 10% p.a., find the maturity value of this account.
Chapter: [0.02] Banking
Cards bearing numbers 2, 4, 6, 8, 10, 12, 14, 16, 18 and 20 are kept in a bag. A card is drawn at random from the bag. Find the probability of getting a card which is:
1) a prime number
2) a number divisible by 4.
3) a number that is a multiple of 6.
4) an odd number.
Chapter: [0.07] Probability
The circumference of the base of the cylindrical vessel is 132 cm and its height is 25 cm. How many litres of water can it hold? (1000 cm3 = 1l)
`["Assume "pi=22/7]`
Chapter: [0.04] Mensuration
If (k – 3), (2k + l) and (4k + 3) are three consecutive terms of an A.P., find the value of k.
Chapter: [0.05] Quadratic Equations
PQRS is a cyclic quadrilateral. Given ∠QPS = 73°, ∠PQS = 55° and ∠PSR = 82°, calculate:
1) ∠QRS
2) ∠RQS
3) ∠PRQ
Chapter: [0.17] Circles
If (x + 2) and (x + 3) are factors of x3 + ax + b, find the values of 'a' and `b'.
Chapter: [0.08] Factorization
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Chapter: [0.05] Trigonometry
Using a graph paper draw a histogram of the given distribution showing the number of runs scored by 50 batsmen. Estimate the mode of the data:
Runs scored |
3000- 4000 |
4000- 5000 |
5000- 6000 |
6000- 7000 |
7000- 8000 |
8000- 9000 |
9000- 10000 |
No. of batsmen |
4 | 18 | 9 | 6 | 7 | 2 | 4 |
Chapter: [0.06] Statistics
Solve the following inequation, write down the solution set and represent it on the real number line:
–2 + 10x ≤ 13x + 10 < 24 + 10x, x 𝜖 Z
Chapter: [0.04] Linear Inequations
Advertisements
If the straight lines 3x – 5y = 7 and 4x + ay + 9 = 0 are perpendicular to one another, find the value of a.
Chapter: [0.14] Co-ordinate Geometry Equation of a Line
Solve x2 + 7x = 7 and give your answer correct to two decimal places
Chapter: [0.05] Quadratic Equations
The 4th term of a G.P. is 16 and the 7th term is 128. Find the first term and common ratio of the series
Chapter: [0.07] Ratio and Proportion
A man invests Rs. 22,500 in Rs. 50 shares available at 10% discount. If the dividend paid by the company is 12%, calculate:
1) The number of shares purchased
2) The annual dividend received.
3) The rate of return he gets on his investment. Give your answer correct to the nearest whole number.
Chapter: [0.03] Shares and Dividends
Use graph paper for this question (Take 2 cm = 1 unit along both x and y-axis). ABCD is a quadrilateral whose vertices are A(2, 2), B(2, –2), C(0, –1) and D(0, 1).
1) Reflect quadrilateral ABCD on the y-axis and name it as A'B'CD
2) Write down the coordinates of A' and B'.
3) Name two points which are invariant under the above reflection
4) Name the polygon A'B'CD
Chapter: [0.14] Co-ordinate Geometry Equation of a Line
Using properties of proportion, solve for x. Given that x is positive:
`(2x + sqrt(4x^2 -1))/(2x - sqrt(4x^2 - 1)) = 4`
Chapter: [0.07] Ratio and Proportion
if A = `[(2,3),(5,7)]`, B = `[(0,4),(-1,7)]` and c = `[(1,0),(-1, 4)]`, find AC + B2 – 10C.
Chapter: [0.09] Matrices
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Chapter: [0.05] Trigonometry
Find the value of k for which the following equation has equal roots.
x2 + 4kx + (k2 – k + 2) = 0
Chapter: [0.05] Quadratic Equations
On a map drawn to a scale of 1: 50,000, a rectangular plot of land ABCD has the following dimensions. AB = 6 cm; BC = 8 cm and all angles are right angles. Find:
1) the actual length of the diagonal distance AC of the plot in km.
2) the actual area of the plot in sq. km.
Chapter: [0.04] Mensuration [0.04] Mensuration
A(2, 5), B(–1, 2) and C(5, 8) are the vertices of a triangle ABC, `M' is a point on AB such that AM: MB = 1: 2. Find the coordinates of 'M'. Hence find the equation of the line passing through the points C and M
Chapter: [0.14] Co-ordinate Geometry Equation of a Line
Advertisements
Rs. 7500 were divided equally among a certain number of children. Had there been 20 less children, each would have received Rs. 100 more. Find the original number of children.
Chapter: [0.05] Quadratic Equations
If the mean of the following distribution is 24, find the value of 'a '.
Marks | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Number of students |
7 | a | 8 | 10 | 5 |
Chapter: [0.06] Statistics
Using ruler and compass only, construct a ΔABC such that BC = 5 cm and AB = 6.5
cm and ∠ABC = 120°
1) Construct a circum-circle of ΔABC
2) Construct a cyclic quadrilateral ABCD, such that D is equidistant from AB and BC.
Chapter: [0.18] Constructions
Priyanka has a recurring deposit account of Rs. 1000 per month at 10% per annum. If she gets Rs. 5550 as interest at the time of maturity, find the total time for which the account was held.
Chapter: [0.02] Banking
In ΔPQR, MN is parallel to QR and `(PM)/(MQ) = 2/3`
1) Find `(MN)/(QR)`
2) Prove that ΔOMN and ΔORQ are similar.
3) Find, Area of ΔOMN : Area of ΔORQ
Chapter: [0.15] Similarity
The following figure represents a solid consisting of a right circular cylinder with a hemisphere at one end and a cone at the other. This common radius is 7 cm. The height of the cylinder and cone are each of 4 cm. Find the volume of the solid.
Chapter: [0.04] Mensuration [0.04] Mensuration
Use Remainder theorem to factorize the following polynomial:
`2x^3 + 3x^2 - 9x - 10`
Chapter: [0.08] Factorization
In the figure given below 'O' is the centre of the circle. If QR = OP and ∠ORP = 20°. Find the value of 'x' giving reasons
Chapter: [0.18] Constructions
The angle of elevation from a point P of the top of a tower QR, 50 m high is 60o and that of the tower PT from a point Q is 30°. Find the height of the tower PT, correct to the nearest metre
Chapter: [0.05] Trigonometry
The 4th term of an A.P. is 22 and the 15th term is 66. Find the first terns and the common
difference. Hence find the sum of the series to 8 terms.
Chapter: [0.05] Quadratic Equations
Use Graph paper for this question.
A survey regarding height (in cm) of 60 boys belonging to Class 10 of a school was conducted. The following data was recorded:
Height in cm |
135-140 | 140-145 | 145-150 | 150-155 | 155-160 | 160-165 | 165-170 |
No. of boys |
4 | 8 | 20 | 14 | 7 | 6 | 1 |
Taking 2 cm = height of 10 cm along one axis and 2 cm = 10 boys along the other axis draw an ogive of the above distribution. Use the graph to estimate the following:
1) the median
2) lower Quartile
3) if above 158 cm is considered as the tall boys of the class. Find the number of boys in the class who are tall.
Chapter: [0.06] Statistics
Other Solutions
Submit Question Paper
Help us maintain new question papers on Shaalaa.com, so we can continue to help studentsonly jpg, png and pdf files
CISCE previous year question papers ICSE Class 10 Mathematics with solutions 2017 - 2018
Previous year Question paper for CISCE ICSE Class 10 Maths-2018 is solved by experts. Solved question papers gives you the chance to check yourself after your mock test.
By referring the question paper Solutions for Mathematics, you can scale your preparation level and work on your weak areas. It will also help the candidates in developing the time-management skills. Practice makes perfect, and there is no better way to practice than to attempt previous year question paper solutions of CISCE ICSE Class 10 .
How CISCE ICSE Class 10 Question Paper solutions Help Students ?
• Question paper solutions for Mathematics will helps students to prepare for exam.
• Question paper with answer will boost students confidence in exam time and also give you an idea About the important questions and topics to be prepared for the board exam.
• For finding solution of question papers no need to refer so multiple sources like textbook or guides.