Advertisements
Advertisements
प्रश्न
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
उत्तर
L.H.S =(1 + cot θ – cosec θ)(1+ tan θ + sec θ)
= `(1 + costheta/sintheta - 1/sin theta)(1+sin theta/cos theta + 1/cos theta)`
`= ((sintheta + costheta - 1)/sintheta)((costheta + sintheta +1)/costheta)`
`= 1/(sinthetacostheta) ((sinthetacostheta+sin^2theta + sin theta+cos^2theta),(+sinthetacostheta+costheta-costheta - sin theta -1))`
`= 1/(sinthetacostheta) (2sinthetacostheta + (sin^2theta + cos^2 theta) - 1)`
`= 1/(sin thetacostheta) (2sinthetacostheta + 1 - 1)`
`= (2sin thetacostheta)/(sin thetacos theta)`
= 2
= R.H.S
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
`cot^2 theta - 1/(sin^2 theta ) = -1`a
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`