Advertisements
Advertisements
प्रश्न
Find the value of k for which the following equation has equal roots.
x2 + 4kx + (k2 – k + 2) = 0
उत्तर
For the given equation x2 + 4kx + (k2 – k + 2) = 0
a = 1, b = 4k and c = k2 - k +1
Since the roots are equal,
b2 - 4ac = 0
`=> (4k)^2 - 4xx1xx(k^2 - k + 2) = 0`
`=> 16k^2 - 4k^2 + 4k - `8 = 0`
`=> 12k^2 + 4k - 8 = 0`
`=> 3k^2 + k - 2 = 0`
`=> 3k^2 + 3k - 2k - 2 = 0`
`=> 3k(k+1) - 2(k+1) = 0`
`=> (k+1) (3k - 2) = 0`
`=> k + 1 = 0 or 3k - 2 = 0`
`=> k = -1 or k = 2/3`
APPEARS IN
संबंधित प्रश्न
Find the values of k for which the quadratic equation 9x2 - 3kx + k = 0 has equal roots.
Determine the nature of the roots of the following quadratic equation:
(b + c)x2 - (a + b + c)x + a = 0
Find the values of k for which the roots are real and equal in each of the following equation:
kx2 + 4x + 1 = 0
Find the value of k for which the roots are real and equal in the following equation:
3x2 − 5x + 2k = 0
Find the values of k for which the roots are real and equal in each of the following equation:
4x2 - 3kx + 1 = 0
If the equation \[\left( 1 + m^2 \right) x^2 + 2 mcx + \left( c^2 - a^2 \right) = 0\] has equal roots, prove that c2 = a2(1 + m2).
Find the nature of the roots of the following quadratic equations: `x^2 - 2sqrt(3)x - 1` = 0 If real roots exist, find them.
Find the value(s) of m for which each of the following quadratic equation has real and equal roots: x2 + 2(m – 1) x + (m + 5) = 0
Discuss the nature of the roots of the following equation: `5x^2 - 6sqrt(5)x + 9` = 0
State whether the following quadratic equation have two distinct real roots. Justify your answer.
3x2 – 4x + 1 = 0