Advertisements
Advertisements
प्रश्न
If the equation \[\left( 1 + m^2 \right) x^2 + 2 mcx + \left( c^2 - a^2 \right) = 0\] has equal roots, prove that c2 = a2(1 + m2).
उत्तर
The given equation \[\left( 1 + m^2 \right) x^2 + 2 mcx + \left( c^2 - a^2 \right) = 0\], has equal roots
Then prove that`c^2 = (1 + m^2)`.
Here,
`a = (1 + m^2), b = 2mc and, c = (c^2 - a^2)`
As we know that `D = b^2 - 4ac`
Putting the value of `a = (1 + m^2), b = 2mc and, c = (c^2 - a^2)`
`D = b^2 - 4ac`
` = {2mc}^2 - 4xx (1 +m^2) xx (c^2 - a^2)`
` = 4 (m^2 c^2) - 4(c^2 -a^2 + m^2c^2 - m^2 a^2)`
` = 4m^2c^2 - 4c^2 + 4a^2 - 4m^2 c^2 + 4m^2a^2`
` = 4a^2 + 4m^2 a^2 = 4c^2`
The given equation will have real roots, if D = 0
`4a^2 + 4m^2 a^2 - 4c^2 = 0`
`4a^2 + 4m^2a^2 = 4c^2`
`4a^2 + (1 + m^2 ) = 4c^2`
`a^2 (1 +m^2) = c^2`
Hence, `c^2 = a^2 (1 + m^2)`.
APPEARS IN
संबंधित प्रश्न
Find the nature of the roots of the following quadratic equation. If the real roots exist, find them:
`3x^2 - 4sqrt3x + 4 = 0`
Solve for x using the quadratic formula. Write your answer corrected to two significant figures. (x - 1)2 - 3x + 4 = 0
Find the values of k for which the roots are real and equal in each of the following equation:
x2 - 2(5 + 2k)x + 3(7 + 10k) = 0
Solve the following quadratic equation using formula method only
3x2 + 12 = 32 x
48x² – 13x -1 = 0
Without actually determining the roots comment upon the nature of the roots of each of the following equations:
`2sqrt(3)x^2 - 2sqrt(2)x - sqrt(3) = 0`
Find the value(s) of k for which each of the following quadratic equation has equal roots: 3kx2 = 4(kx – 1)
If (x – a) is one of the factors of the polynomial ax2 + bx + c, then one of the roots of ax2 + bx + c = 0 is:
If the one root of the equation 4x2 – 2x + p – 4 = 0 be the reciprocal of the other. The value of p is:
Does there exist a quadratic equation whose coefficients are all distinct irrationals but both the roots are rationals? Why?