Advertisements
Advertisements
प्रश्न
If a, b, c are real numbers such that ac ≠ 0, then show that at least one of the equations ax2 + bx + c = 0 and -ax2 + bx + c = 0 has real roots.
उत्तर
The given equations are
ax2 + bx + c = 0 ......... (1)
-ax2 + bx + c = 0 ........... (2)
Roots are simultaneously real
Let D1 and D2 be the discriminants of equation (1) and (2) respectively,
Then,
D1 = (b)2 - 4ac
= b2 - 4ac
And
D2 = (b)2 - 4 x (-a) x c
= b2 + 4ac
Both the given equation will have real roots, if D1 ≥ 0 and D2 ≥ 0.
Thus,
b2 - 4ac ≥ 0
b2 ≥ 4ac ................. (3)
And,
b2 + 4ac ≥ 0 ............... (4)
Now given that a, b, c are real number and ac ≠ 0 as well as from equations (3) and (4) we get
At least one of the given equation has real roots
Hence, proved
APPEARS IN
संबंधित प्रश्न
Is it possible to design a rectangular park of perimeter 80 and area 400 m2? If so find its length and breadth.
Find the values of k for which the roots are real and equal in each of the following equation:
4x2 - 3kx + 1 = 0
Find the value of k for which the roots of the equation 3x2 -10x +k = 0 are reciprocal of each other.
From the quadratic equation if the roots are 6 and 7.
Without actually determining the roots comment upon the nature of the roots of each of the following equations:
`2sqrt(3)x^2 - 2sqrt(2)x - sqrt(3) = 0`
Solve for x : `9^(x + 2) -6.3^(x + 1) + 1 = 0`.
If the ratio of the roots of the equation
lx2 + nx + n = 0 is p: q, Prove that
`sqrt(p/q) + sqrt(q/p) + sqrt(n/l) = 0.`
Discuss the nature of the roots of the following quadratic equations : x2 – 4x – 1 = 0
If α + β = 4 and α3 + β3 = 44, then α, β are the roots of the equation:
Find the value of k for which the roots of the quadratic equation 5x2 – 10x + k = 0 are real and equal.