Advertisements
Advertisements
Question
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Solution
(1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
= `(1 + sinθ/cosθ + 1/cosθ)(1 + cosθ/sinθ - 1/sinθ)`
= `((cosθ + sinθ + 1)/cosθ)((sinθ + cosθ - 1)/sinθ)`
= `((sinθ + cosθ)^2 - (1)^2)/(sinθcosθ)`
= `(sin^2θ + cos^2θ + 2sinθ cosθ - 1)/(sinθcosθ)`
= `(1 + 2sinθ cosθ - 1)/(sinθcosθ)`
= `(2sinθ cosθ)/(sinθ cosθ) = 2`
APPEARS IN
RELATED QUESTIONS
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
If tan α + cot α = 2, then tan20α + cot20α = ______.
Complete the following activity to prove:
cotθ + tanθ = cosecθ × secθ
Activity: L.H.S. = cotθ + tanθ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2theta)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ....... ∵ `square`
= `1/sinθ xx 1/cosθ`
= `square xx secθ`
∴ L.H.S. = R.H.S.