Advertisements
Advertisements
प्रश्न
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
उत्तर
(1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
= `(1 + sinθ/cosθ + 1/cosθ)(1 + cosθ/sinθ - 1/sinθ)`
= `((cosθ + sinθ + 1)/cosθ)((sinθ + cosθ - 1)/sinθ)`
= `((sinθ + cosθ)^2 - (1)^2)/(sinθcosθ)`
= `(sin^2θ + cos^2θ + 2sinθ cosθ - 1)/(sinθcosθ)`
= `(1 + 2sinθ cosθ - 1)/(sinθcosθ)`
= `(2sinθ cosθ)/(sinθ cosθ) = 2`
APPEARS IN
संबंधित प्रश्न
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
Prove that `sec"A"/(tan "A" + cot "A")` = sin A