Advertisements
Advertisements
Question
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Options
sec2 A
−1
cot2 A
tan2 A
Solution
Given:
`(1+tan^2 A)/(1+cot^2 A)`
`= (1+sin^2 A/cos^2 A)/(1+cos^2/sin^2A)`
`=(cos^2 A+sin^2 A/cos^2 A)/(sin^2 A+cos^2 A/sin^2A)`
`=(1/cos^2 A)/(1/sin^2A)`
`=sin^2 A/cos^2 A`
`= tan^2 A`
APPEARS IN
RELATED QUESTIONS
9 sec2 A − 9 tan2 A = ______.
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
What is the value of (1 − cos2 θ) cosec2 θ?
What is the value of 9cot2 θ − 9cosec2 θ?
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
Choose the correct alternative:
cos 45° = ?
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.