Advertisements
Advertisements
Question
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Options
1
\[- 1\]
\[\frac{1}{2}\]
\[\frac{1}{4}\]
Solution
`bb(1/2)`
Explanation:
It is given that,
\[\sin\theta - \cos\theta = 0\]
\[ \Rightarrow \sin\theta = \cos\theta\]
\[ \Rightarrow \frac{\sin\theta}{\cos\theta} = 1\]
\[ \Rightarrow \tan\theta = 1\]
\[ \Rightarrow \tan\theta = \tan45°\]
\[ \Rightarrow \theta = 45°\]
\[\therefore \sin^4 \theta + \cos^4 \theta\]
\[ = \sin^4 45° + \cos^4 45°\]
\[ = \left( \frac{1}{\sqrt{2}} \right)^4 + \left( \frac{1}{\sqrt{2}} \right)^4 \]
\[ = \frac{1}{4} + \frac{1}{4}\]
\[ = \frac{1}{2}\]
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities
`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following trigonometric identities.
`cot^2 A cosec^2B - cot^2 B cosec^2 A = cot^2 A - cot^2 B`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`