English

If Sin θ = 4 5 What is the Value of Cotθ + Cosecθ? - Mathematics

Advertisements
Advertisements

Question

If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ? 

Sum

Solution

Given: `sin θ=4/5` 

We know that, 

`sin^2 θ+cos^2=1` 

⇒ `(4/5)^2+cos^2 θ=1` 

⇒ `16/25+cos^2 θ=1` 

⇒ `cos^2θ=1-16/25` 

⇒`cos^2θ=9/25` 

⇒`cosθ=3/5` 

We have, 

`cos θ+cosec θ=cosθ/sin θ+1/sinθ` 

= `(3/5)/(4/5)+1/(4/5)` 

= `3/4+5/4` 

= `2`

Hence, the value of cotθ + cosecθ is 2.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.3 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.3 | Q 11 | Page 55

RELATED QUESTIONS

Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`


Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`


Prove the following trigonometric identities

sec4 A(1 − sin4 A) − 2 tan2 A = 1


Prove the following identities:

(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A


Prove the following identities:

`cosA/(1 + sinA) + tanA = secA`


Prove the following identities:

`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`


Prove the following identities:

(1 + tan A + sec A) (1 + cot A – cosec A) = 2


`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`


cosec4θ − cosec2θ = cot4θ + cot2θ


Prove the following identity :

`cos^4A - sin^4A = 2cos^2A - 1`


Prove the following identity : 

`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`


Prove the following identity :

`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`


Find the value of sin 30° + cos 60°.


Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.


If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.


If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.


Prove the following identities.

(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2


If tan θ + cot θ = 2, then tan2θ + cot2θ = ?


If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.


If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×