Advertisements
Advertisements
Question
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
Solution
Given: `sin θ=4/5`
We know that,
`sin^2 θ+cos^2=1`
⇒ `(4/5)^2+cos^2 θ=1`
⇒ `16/25+cos^2 θ=1`
⇒ `cos^2θ=1-16/25`
⇒`cos^2θ=9/25`
⇒`cosθ=3/5`
We have,
`cos θ+cosec θ=cosθ/sin θ+1/sinθ`
= `(3/5)/(4/5)+1/(4/5)`
= `3/4+5/4`
= `2`
Hence, the value of cotθ + cosecθ is 2.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
Prove the following identities:
(sin A + cosec A)2 + (cos A + sec A)2 = 7 + tan2 A + cot2 A
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
cosec4θ − cosec2θ = cot4θ + cot2θ
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
Find the value of sin 30° + cos 60°.
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.