Advertisements
Advertisements
Question
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
Solution
tan θ + cot θ = 2 ....[Given]
∴ (tan θ + cot θ)2 = 4 .....[Squaring both sides]
∴ tan2θ + 2tan θ.cot θ + cot2θ = 4 ......[∵ (a + b)2 = a2 + 2ab + b2]
∴ tan2θ + 2(1) + cot2θ = 4 ......[∵ tan θ ⋅ cot θ = 1]
∴ tan2θ + cot2θ = 4 – 2
∴ tan2θ + cot2θ = 2
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
If `sin theta = x , " write the value of cot "theta .`
If `sec theta = x ,"write the value of tan" theta`.
Write the value of cosec2 (90° − θ) − tan2 θ.
If a cos θ − b sin θ = c, then a sin θ + b cos θ =
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
The value of sin2θ + `1/(1 + tan^2 theta)` is equal to
Prove that `"cosec" θ xx sqrt(1 - cos^2theta)` = 1
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ