Advertisements
Advertisements
Question
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Solution
Here,
x2 = a2 sec2θ + 2ab sec θ.tan θ + b2tan2θ
y2 = a2 tan2θ + 2ab sec θ.tan θ + b2sec2θ
⇒ x2 - y2 = a2 ( sec2θ - tan2θ ) - b2 ( sec2θ - tan2θ )
⇒ x2 - y2 = a2 - b2. ....( ∵ sec2θ - tan2θ = 1)
Hence proved.
APPEARS IN
RELATED QUESTIONS
9 sec2 A − 9 tan2 A = ______.
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
`(1+ tan theta + cot theta )(sintheta - cos theta) = ((sec theta)/ (cosec^2 theta)-( cosec theta)/(sec^2 theta))`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
If `sec theta + tan theta = x," find the value of " sec theta`
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ