Advertisements
Advertisements
Question
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Solution
L.H.S. = sec2 A + cosec2 A
= `1/(cos^2A) + 1/(sin^2A)`
= `(sin^2A + cos^2A)/(cos^2A sin^2A)`
= `1/(cos^2A sin^2A)`
= sec2 A cosec2 A
= R.H.S. ...(∵ sin2 A + cos2 A = 1)
APPEARS IN
RELATED QUESTIONS
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Write the value of cosec2 (90° − θ) − tan2 θ.
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ