Advertisements
Advertisements
प्रश्न
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
उत्तर
L.H.S. = sec2 A + cosec2 A
= `1/(cos^2A) + 1/(sin^2A)`
= `(sin^2A + cos^2A)/(cos^2A sin^2A)`
= `1/(cos^2A sin^2A)`
= sec2 A cosec2 A
= R.H.S. ...(∵ sin2 A + cos2 A = 1)
APPEARS IN
संबंधित प्रश्न
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
If cos A + cos2A = 1, then sin2A + sin4 A = ?
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ