Advertisements
Advertisements
प्रश्न
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
उत्तर
L.H.S. = `((1 + tan^2A)cotA)/(cosec^2A)`
= `(sec^2A cotA)/(cosec^2A` ...(∵ sec2 A = 1 + tan2 A)
= `(1/(cos^2A) xx (cosA)/(sinA))/(1/(sin^2A))`
= `(1/(cosA sinA))/(1/(sin^2A))`
= `sinA/cosA`
= tan A = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)