Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
उत्तर
LHS = `(secA - 1)/(secA + 1)`
= `(1/cosA - 1)/(1/cosA + 1) = (1 - cosA)/(1 + cosA)`
= `(1 - cosA)/(1 + cosA) xx (1 + cosA)/(1 + cosA)`
= `(1-cos^2A)/(1 + cosA)^2`
= `sin^2A/(1 + cosA)^2` (∵ `1 - cos^2A = sin^2A`)
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ