Advertisements
Advertisements
प्रश्न
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
पर्याय
0
1
−1
None of these
उत्तर
The given expression is `2(sin^6θ+cos^6θ)-3(sin^4θ+cos^4θ)`
Simplifying the given expression, we have
`2(sinθ+cos^6θ)-3(sin^4θ+cos^4θ)`
= `2sin^6θ+2cos^6θ-3sin^4θ-3cos^4θ`
=`(2 sin^6 θ-3sin^4θ)+(2 cos^6-3 cos^4θ)`
=`sin^4θ(2sin^2θ-3)+cos^4θ(2 cos^2θ-3)`
`=sin^4θ{2(1-cos^2)-3}+cos^4θ{2(1-sin^2 θ)-3)`
`= sin^4θ(2-2cos^2θ-3)+cos^4θ(2-2sin^2 θ-3) `
`=sin^4θ(-1-2cos^θ)+cos^4θ(1-2sin^2θ)`
`= -sin^4θ-2 sin^4θ cos^2θ-cos^4θ-2cos^4 θ sin^2θ`
`=sin^4θ-cos^4θ-2 cos^4 θ sin^2θ-2 sin^4 θcos^2θ`
`=-sin^4θ-cos^4θ-2cos^2θ sin^2(cos^2+sin^2θ)`
`=-sin^4θ-cos^4θ-2cos^2θsin^2θ(1)`
`=-sin^4θ-cos^4θ-2cos^2sin^2θ`
`=(sin^4θ+cos^4 θ+2 cos^2 θ sin^2 θ)`
`=-{(sin^2θ)^2+(cos^2θ)^2+2 sin^2 θ cos^2θ}`
` =-(sin^2θ+cos^2θ)^2`
`=-(1)^2`
`=-1`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following trigonometric identities.
`(tan^2 A)/(1 + tan^2 A) + (cot^2 A)/(1 + cot^2 A) = 1`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
(i)` (1-cos^2 theta )cosec^2theta = 1`
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1