Advertisements
Advertisements
प्रश्न
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
उत्तर
`cos63^circ sec(90^circ - θ) = 1`
`cos 63^circ cosecθ = 1`
⇒ `cos63^circ = sinθ`
⇒ `cos 63^circ = cos(90^circ - θ)`
⇒ `63^circ = 90^circ - θ`
⇒ `θ = 27^circ`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
Write True' or False' and justify your answer the following :
The value of \[\cos^2 23 - \sin^2 67\] is positive .
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`