Advertisements
Advertisements
प्रश्न
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
उत्तर
LHS = ( 1 + tan A)2 + (1 - tan A)2
= 1 + 2 tan A + tan2A + 1 - 2 tan A + tan2A
= 2( 1 + tan2A)
= 2 sec2A
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`