Advertisements
Advertisements
प्रश्न
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`
उत्तर
`(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`
L.H.S. `(cot A - cos A)/(cot A + cos A)`
= `(cos A/sin A - cos A)/(cos A/sin A + cos A)`
= `(cos A(1/sinA - 1))/(cos A(1/sin A + 1))`
= `(1/sin A - 1)/(1/sin A + 1)`
= `(1 - sin A)/(1 + sin A)`
= `(1 - sin A)/(1 + sin A) xx (1 + sin A)/(1 + sin A)`
= `(1 - sin^2 A)/(1 + sin A)^2`
= `cos^2 A/(1 + sin A)^2`
= R.H.S.
Hence Proved.
APPEARS IN
संबंधित प्रश्न
If `x/a=y/b = z/c` show that `x^3/a^3 + y^3/b^3 + z^3/c^3 = (3xyz)/(abc)`.
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following trigonometric identities.
`(tan^3 theta)/(1 + tan^2 theta) + (cot^3 theta)/(1 + cot^2 theta) = sec theta cosec theta - 2 sin theta cos theta`
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
Write the value of ` cosec^2 (90°- theta ) - tan^2 theta`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Evaluate:
`(tan 65°)/(cot 25°)`
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
If cos θ = `24/25`, then sin θ = ?