हिंदी

Prove that cotA-cosAcotA+cosA=cos2A(1+sinA)2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`

योग

उत्तर

`(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`

L.H.S. `(cot A - cos A)/(cot A + cos A)`

= `(cos A/sin A - cos A)/(cos A/sin A + cos A)`

= `(cos A(1/sinA - 1))/(cos A(1/sin A + 1))`

= `(1/sin A - 1)/(1/sin A + 1)`

= `(1 - sin A)/(1 + sin A)`

= `(1 - sin A)/(1 + sin A) xx (1 + sin A)/(1 + sin A)`

= `(1 - sin^2 A)/(1 + sin A)^2`

= `cos^2 A/(1 + sin A)^2`

= R.H.S.

Hence Proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Basic - Outside Delhi Set 1

संबंधित प्रश्न

Prove the following identities:

`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`

`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`

`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`


Prove the following identities:

`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`

`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`

`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`


Prove the following trigonometric identities.

`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`


Prove the following trigonometric identities.

(1 + cot A − cosec A) (1 + tan A + sec A) = 2


If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1


Prove the following identities:

(sec A – cos A) (sec A + cos A) = sin2 A + tan2


`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`


`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`


Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


If  `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`


Write the value of tan10° tan 20° tan 70° tan 80° .


Define an identity.


If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.


What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?


If cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2 


Prove the following identity : 

`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`


Prove the following identity : 

`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`


Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.


If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×