Advertisements
Advertisements
प्रश्न
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`
उत्तर
`(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`
L.H.S. `(cot A - cos A)/(cot A + cos A)`
= `(cos A/sin A - cos A)/(cos A/sin A + cos A)`
= `(cos A(1/sinA - 1))/(cos A(1/sin A + 1))`
= `(1/sin A - 1)/(1/sin A + 1)`
= `(1 - sin A)/(1 + sin A)`
= `(1 - sin A)/(1 + sin A) xx (1 + sin A)/(1 + sin A)`
= `(1 - sin^2 A)/(1 + sin A)^2`
= `cos^2 A/(1 + sin A)^2`
= R.H.S.
Hence Proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
Write the value of tan10° tan 20° tan 70° tan 80° .
Define an identity.
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
If a cot θ + b cosec θ = p and b cot θ − a cosec θ = q, then p2 − q2
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.