Advertisements
Advertisements
प्रश्न
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
उत्तर
LHS=` 1/((1+ tan^2 theta))+1/((1+ cot^2 theta))`
=`1/sec^2 theta + 1/(cosec^2 theta)`
=` cos^2 theta + sin^2 theta`
=1
=RHS
APPEARS IN
संबंधित प्रश्न
Evaluate sin25° cos65° + cos25° sin65°
9 sec2 A − 9 tan2 A = ______.
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
If tan θ = `13/12`, then cot θ = ?
If 1 – cos2θ = `1/4`, then θ = ?
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
Complete the following activity to prove:
cotθ + tanθ = cosecθ × secθ
Activity: L.H.S. = cotθ + tanθ
= `cosθ/sinθ + square/cosθ`
= `(square + sin^2theta)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ....... ∵ `square`
= `1/sinθ xx 1/cosθ`
= `square xx secθ`
∴ L.H.S. = R.H.S.