हिंदी

`1/((1+Tan^2 Theta)) + 1/((1+ Tan^2 Theta))` - Mathematics

Advertisements
Advertisements

प्रश्न

`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`

उत्तर

LHS=` 1/((1+ tan^2 theta))+1/((1+ cot^2 theta))`

       =`1/sec^2 theta + 1/(cosec^2 theta)`

       =` cos^2 theta + sin^2 theta`

       =1

       =RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 1

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 1 | Q 3.2

संबंधित प्रश्न

 Evaluate sin25° cos65° + cos25° sin65°


9 sec2 A − 9 tan2 A = ______.


Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1


Prove the following trigonometric identities.

sec6θ = tan6θ + 3 tan2θ sec2θ + 1


Prove the following identities:

(1 + tan A + sec A) (1 + cot A – cosec A) = 2


If x = a cos θ and y = b cot θ, show that:

`a^2/x^2 - b^2/y^2 = 1` 


`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ


Prove that:

`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.


What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?


If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ = 


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Prove that:

`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)` 


Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.


Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`


If tan θ = `13/12`, then cot θ = ?


If 1 – cos2θ = `1/4`, then θ = ?


Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`


Complete the following activity to prove:

cotθ + tanθ = cosecθ × secθ

Activity: L.H.S. = cotθ + tanθ

= `cosθ/sinθ + square/cosθ`

= `(square + sin^2theta)/(sinθ xx cosθ)`

= `1/(sinθ xx  cosθ)` ....... ∵ `square`

= `1/sinθ xx 1/cosθ`

= `square xx secθ`

∴ L.H.S. = R.H.S.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×