हिंदी

If tan θ = 1312, then cot θ = ? - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If tan θ = `13/12`, then cot θ = ?

योग

उत्तर

 cot θ = `1/tantheta`

= `1/(13/12)`

∴ cot θ = `12/13`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.1 (B)

संबंधित प्रश्न

Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`


Without using trigonometric tables evaluate

`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`


Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)

Show that one of the values of each member of this equality is sin α sin β sin γ


Prove that:

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`


If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.


`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`


`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`


Show that none of the following is an identity:
(i) `cos^2theta + cos theta =1`


Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`


Write the value of `(1 - cos^2 theta ) cosec^2 theta`.


Write the value of tan10° tan 20° tan 70° tan 80° .


Prove the following identity : 

`sqrt(cosec^2q - 1) = "cosq  cosecq"`


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Prove that:

`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`


Prove that `(tan θ)/(cot(90° - θ)) + (sec (90° - θ) sin (90° - θ))/(cosθ. cosec θ) = 2`.


Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.


Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.


Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.


Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×