Advertisements
Advertisements
प्रश्न
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
उत्तर
`sqrt(cosec^2q - 1) = "cosq cosecq"`
`sqrt(cosec^2q - 1) = sqrt(cot^2q) (Q cosec^2q - 1 = cot^2q)`
= `cotq = cosq/sinq = cosq . 1/sinq`
= `"cosq cosecq"`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
Write the value of cos1° cos 2°........cos180° .
If `sin theta = x , " write the value of cot "theta .`
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.