Advertisements
Advertisements
प्रश्न
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
उत्तर
`sqrt(cosec^2q - 1) = "cosq cosecq"`
`sqrt(cosec^2q - 1) = sqrt(cot^2q) (Q cosec^2q - 1 = cot^2q)`
= `cotq = cosq/sinq = cosq . 1/sinq`
= `"cosq cosecq"`
APPEARS IN
संबंधित प्रश्न
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
What is the value of 9cot2 θ − 9cosec2 θ?
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
Choose the correct alternative:
cos 45° = ?
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`