Advertisements
Advertisements
प्रश्न
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
उत्तर
L.H.S. = sin4θ - cos4θ
L.H.S. = (sin2θ)2 - (cos2θ)2
L.H.S. = (sin2θ - cos2θ)(sin2θ + cos2θ)
L.H.S. = (sin2θ - cos2θ) x 1
L.H.S. = sin2θ - cos2θ
L.H.S. = R.H.S.
L.H.S.= sin2θ - (1 - sin2θ)
L.H.S. = sin2θ - 1 + sin2θ
L.H.S. = 2sin2θ - 1
L.H.S. = R.H.S
L.H.S. = 2(1 - cos2θ) - 1
L.H.S. = 2 - 2cos2θ - 1
L.H.S. = 1 - 2cos2θ
L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.