मराठी

Prove that Sin4 θ - Cos4 θ = Sin2 θ - Cos2 θ = 2sin2 θ - 1 = 1 - 2 Cos2 θ - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ

बेरीज

उत्तर

L.H.S. = sin4θ - cos4θ
L.H.S. = (sin2θ)2 - (cos2θ)2
L.H.S. = (sin2θ - cos2θ)(sin2θ + cos2θ)
L.H.S. = (sin2θ - cos2θ) x 1
L.H.S. = sin2θ - cos2θ 
L.H.S. = R.H.S.

L.H.S.= sin2θ - (1 - sin2θ)
L.H.S. = sin2θ - 1 + sin2θ
L.H.S. = 2sin2θ - 1
L.H.S. = R.H.S

L.H.S. = 2(1 - cos2θ) - 1
L.H.S. = 2 - 2cos2θ - 1
L.H.S. = 1 - 2cos2θ
L.H.S. = R.H.S.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Trigonometry - Exercise 2

APPEARS IN

आईसीएसई Mathematics [English] Class 10
पाठ 18 Trigonometry
Exercise 2 | Q 5
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×