Advertisements
Advertisements
Question
Prove that sin4θ - cos4θ = sin2θ - cos2θ
= 2sin2θ - 1
= 1 - 2 cos2θ
Solution
L.H.S. = sin4θ - cos4θ
L.H.S. = (sin2θ)2 - (cos2θ)2
L.H.S. = (sin2θ - cos2θ)(sin2θ + cos2θ)
L.H.S. = (sin2θ - cos2θ) x 1
L.H.S. = sin2θ - cos2θ
L.H.S. = R.H.S.
L.H.S.= sin2θ - (1 - sin2θ)
L.H.S. = sin2θ - 1 + sin2θ
L.H.S. = 2sin2θ - 1
L.H.S. = R.H.S
L.H.S. = 2(1 - cos2θ) - 1
L.H.S. = 2 - 2cos2θ - 1
L.H.S. = 1 - 2cos2θ
L.H.S. = R.H.S.
APPEARS IN
RELATED QUESTIONS
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Prove that:
tan (55° + x) = cot (35° – x)
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1