English

Prove that cosec θ – cot θ = sinθ1+cosθ - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`

Sum

Solution

L.H.S = cosec θ – cot θ

= `1/sintheta - costheta/sintheta`

= `(1 -costheta)/sintheta`

= `(1 - costheta)/sintheta xx (1 + costheta)/(1 +costheta)`    .....[On rationalising the numerator]

= `(1 - cos^2theta)/(sintheta(1 +costheta))`

= `(sin^2theta)/(sintheta(1 + costheta))`   .....`[(because sin^2theta + cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`

= `sintheta/(1 + costheta)`

= R.H.S

∴ cosec θ – cot θ = `sin theta/(1 + cos theta)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.3 (B)

APPEARS IN

RELATED QUESTIONS

If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p


Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`

 


Prove the following trigonometric identities.

`1/(1 + sin A) + 1/(1 - sin A) =  2sec^2 A`


Prove the following trigonometric identities.

`(tan A + tan B)/(cot A + cot B) = tan A tan B`


Prove the following identities:

`sinA/(1 + cosA) = cosec A - cot A`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


Prove the following identities:

`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`


Prove that:

cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A


If ` cot A= 4/3 and (A+ B) = 90°  `  ,what is the value of tan B?


\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to 


Prove the following identity :

(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`


Prove the following identity :

`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`


Prove the following Identities :

`(cosecA)/(cotA+tanA)=cosA`


Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`


Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.


Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.


Choose the correct alternative:

`(1 + cot^2"A")/(1 + tan^2"A")` = ?


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


Prove that

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×