Advertisements
Advertisements
Question
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
Solution
L.H.S = cosec θ – cot θ
= `1/sintheta - costheta/sintheta`
= `(1 -costheta)/sintheta`
= `(1 - costheta)/sintheta xx (1 + costheta)/(1 +costheta)` .....[On rationalising the numerator]
= `(1 - cos^2theta)/(sintheta(1 +costheta))`
= `(sin^2theta)/(sintheta(1 + costheta))` .....`[(because sin^2theta + cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`
= `sintheta/(1 + costheta)`
= R.H.S
∴ cosec θ – cot θ = `sin theta/(1 + cos theta)`
APPEARS IN
RELATED QUESTIONS
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove the following identities:
`sinA/(1 + cosA) = cosec A - cot A`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identities:
`(1 - cosA)/sinA + sinA/(1 - cosA)= 2cosecA`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`