Advertisements
Advertisements
Question
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
Solution
cos C = `12/13` .....(i) [Given]
In ∆ABC,
Let ∠ABC = 90°
∴ cos C = `"BC"/"AC"` .....(ii) [By definition]
∴ `"BC"/"AC" = 12/13` ......[From (i) and (ii)]
∴ `24/"AC" = 12/13`
∴ `(24 xx 13)/12` = AC
∴ `312/12` = AC
∴ AC = 26 units
RELATED QUESTIONS
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
Solve.
`tan47/cot43`
Solve.
`sec75/(cosec15)`
solve.
sec2 18° - cot2 72°
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Use tables to find cosine of 9° 23’ + 15° 54’
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
What is the maximum value of \[\frac{1}{\sec \theta}\]
If \[\cos \theta = \frac{2}{3}\] find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]
Given
\[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\] what is the value of \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\]
If \[\frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta}\] write the value of \[\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta}\]
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
The value of tan 10° tan 15° tan 75° tan 80° is
Prove that:
cos15° cos35° cosec55° cos60° cosec75° = \[\frac{1}{2}\]
Find the sine ratio of θ in standard position whose terminal arm passes through (4,3)
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`