हिंदी

In ∆ABC, cos C = 1213 and BC = 24, then AC = ? - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?

योग

उत्तर


cos C = `12/13`     .....(i) [Given]

In ∆ABC,

Let ∠ABC = 90°

∴ cos C = `"BC"/"AC"`    .....(ii) [By definition]

∴ `"BC"/"AC" = 12/13`  ......[From (i) and (ii)]

∴ `24/"AC" = 12/13`

∴ `(24 xx 13)/12` = AC

∴ `312/12` = AC

∴ AC = 26 units

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.3 (B)

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.


Without using trigonometric tables evaluate the following:

`(i) sin^2 25º + sin^2 65º `


Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°


Without using trigonometric tables evaluate:

`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`


if `sin theta = 1/sqrt2`  find all other trigonometric ratios of angle θ.


Show that : `sin26^circ/sec64^circ  + cos26^circ/(cosec64^circ) = 1`


Use tables to find the acute angle θ, if the value of sin θ is 0.4848


Find A, if 0° ≤ A ≤ 90° and 2 cos2 A + cos A – 1 = 0


Write the maximum and minimum values of sin θ.


If \[\cos \theta = \frac{2}{3}\]  find the value of \[\frac{\sec \theta - 1}{\sec \theta + 1}\]


If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]


If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =


The value of

\[\frac{\cos \left( 90°- \theta \right) \sec \left( 90°- \theta \right) \tan \theta}{cosec \left( 90°- \theta \right) \sin \left( 90° - \theta \right) \cot \left( 90°- \theta \right)} + \frac{\tan \left( 90° - \theta \right)}{\cot \theta}\] 

 


\[\frac{2 \tan 30° }{1 + \tan^2 30°}\]  is equal to


In the following figure  the value of cos ϕ is 


Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2


Express the following in term of angles between 0° and 45° :

cos 74° + sec 67°


The value of tan 1° tan 2° tan 3°…. tan 89° is


Prove the following:

tan θ + tan (90° – θ) = sec θ sec (90° – θ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×