Advertisements
Advertisements
प्रश्न
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
उत्तर
`cosθ=1/sqrt(2)`
`cos^2theta=(1/sqrt2)^2=1/2`
`cos^2theta+ sin^2theta=1`
`1/2+sin^2theta=1`
`sin^2theta=1-1/2=1/2`
`sintheta=sqrt(1/2)=1/sqrt2`
APPEARS IN
संबंधित प्रश्न
If the angle θ= –60º, find the value of cosθ.
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Find the value of x, if sin x = sin 60° cos 30° + cos 60° sin 30°
Find the value of x, if cos x = cos 60° cos 30° – sin 60° sin 30°
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Prove that:
`(cos(90^circ - theta)costheta)/cottheta = 1 - cos^2theta`
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
Prove that:
sec (70° – θ) = cosec (20° + θ)
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
The value of cos 1° cos 2° cos 3° ..... cos 180° is
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
Prove the following:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)