Advertisements
Advertisements
प्रश्न
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
विकल्प
tan 90°
1
sin 45°
sin 0°
उत्तर
We have to find the value of the following
`(1- tan^2 45°)/(1+tan^2 45°)`
so
`(1-tan^2 45°)/(1+tan^2 45°)`
=`(1-(-1)^2)/(1+(1)^2)`
=`0/1`
=` 0`
We know that tan `45°=1`
` sin 0°=0`
= `sin 0°`
APPEARS IN
संबंधित प्रश्न
If the angle θ= –60º, find the value of cosθ.
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Evaluate:
14 sin 30° + 6 cos 60° – 5 tan 45°
Prove that:
`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`
Use trigonometrical tables to find tangent of 17° 27'
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
Evaluate: `3(sin72°)/(cos18°) - (sec32°)/("cosec"58°)`.
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
If sin 3A = cos 6A, then ∠A = ?