Advertisements
Advertisements
प्रश्न
if `cot theta = sqrt3` find the value of `(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta)`
उत्तर
`Given `cot theta = sqrt3`
We have to find the value of the expression `(cosec^2 theta = cot^2 theta)/(cosec^2 theta - sec^2 theta)`
We know that
`cot theta = sqrt3 => cot^2 theta = 3`
`cosec^2 theta =1 + cot^2 theta = 1 + (sqrt3)^2 = 4`
`sec^2 theta = 1/cos^2 theta = 1/(1 - sin^2 theta) = 1/(1 - 1/cosec^2 theta) = 1/(1 - 1/4) = 4/3`
Therefore
`(cosec^2 theta + cot^2 theta)/(cosec^2 theta - sec^2 theta) = (4 + 3)/(4 - 4/3)`
`= 21/8`
Hence, the value of the given expression is 21/8
APPEARS IN
संबंधित प्रश्न
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Use tables to find sine of 34° 42'
Prove that:
sin (28° + A) = cos (62° – A)
If A and B are complementary angles, prove that:
cot A cot B – sin A cos B – cos A sin B = 0
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
If the angle θ = –45° , find the value of tan θ.
What is the maximum value of \[\frac{1}{\sec \theta}\]
If \[\tan A = \frac{5}{12}\] \[\tan A = \frac{5}{12}\] find the value of (sin A + cos A) sec A.
If x sin (90° − θ) cot (90° − θ) = cos (90° − θ), then x =
The value of tan 10° tan 15° tan 75° tan 80° is
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
The value of tan 1° tan 2° tan 3°…. tan 89° is
If cot( 90 – A ) = 1, then ∠A = ?
In the given figure, if AB = 14 cm, BD = 10 cm and DC = 8 cm, then the value of tan B is ______.
Sin 2B = 2 sin B is true when B is equal to ______.
If A, B and C are interior angles of a ΔABC then `cos (("B + C")/2)` is equal to ______.