Advertisements
Advertisements
प्रश्न
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
उत्तर
Given `cosec A = sqrt2`
We have to find the value of the expression `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
We know that
`cosec A =sqrt2`
`=> sin A = 1/(cosec A) = 1/sqrt2`
`cos A = sqrt(1 - sin^2 A) = sqrt(1 - (1/sqrt2)^2) = 1/sqrt2`
`tan A = sin A/cos A = (1/sqrt2)/(1/sqrt2) = 1`
`cot A = 1/tan A = 1/1 = 1`
Therefore,
`(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A)) = (2 xx (1/sqrt2)^2 + 3 xx 1^2)/(4(1^2 - (1/sqrt2)^2))`
= 2
Hence, the value of the given expression is 2
APPEARS IN
संबंधित प्रश्न
`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`
Evaluate cosec 31° − sec 59°
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
For triangle ABC, show that : `sin (A + B)/2 = cos C/2`
Find the value of angle A, where 0° ≤ A ≤ 90°.
cos (90° – A) . sec 77° = 1
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Evaluate:
`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.
Write the value of tan 10° tan 15° tan 75° tan 80°?
If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\]
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
The value of cos 1° cos 2° cos 3° ..... cos 180° is
\[\frac{2 \tan 30° }{1 + \tan^2 30°}\] is equal to
The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`