हिंदी

If Cosec a = Sqrt2 Find the Value of (2 Sin^2 a + 3 Cot^2 A)/(4(Tan^2 a - Cos^2 A)) - Mathematics

Advertisements
Advertisements

प्रश्न

if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`

उत्तर

Given `cosec A = sqrt2`

We have to find the value of the expression  `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`

We know that

`cosec A =sqrt2`

`=> sin A = 1/(cosec A) = 1/sqrt2`

`cos A = sqrt(1 - sin^2 A) = sqrt(1 - (1/sqrt2)^2) = 1/sqrt2`

`tan A = sin A/cos A = (1/sqrt2)/(1/sqrt2) = 1`

`cot A = 1/tan A = 1/1 = 1`

Therefore,

`(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A)) = (2 xx (1/sqrt2)^2 + 3 xx 1^2)/(4(1^2 - (1/sqrt2)^2))`

= 2

Hence, the value of the given expression is 2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.2 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.2 | Q 7 | पृष्ठ ५४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

`\text{Evaluate }\frac{\tan 65^\circ }{\cot 25^\circ}`

 


Evaluate cosec 31° − sec 59°


if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`


Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`


For triangle ABC, show that : `sin  (A + B)/2 = cos  C/2`


Find the value of angle A, where 0° ≤ A ≤ 90°.

cos (90° – A) . sec 77° = 1


Use tables to find the acute angle θ, if the value of cos θ is 0.9848


Use tables to find the acute angle θ, if the value of tan θ is 0.7391


Evaluate:

`(3sin72^@)/(cos18^@) - sec32^@/(cosec58^@)`


If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A


∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.


Write the value of tan 10° tan 15° tan 75° tan 80°?


If \[\tan \theta = \frac{1}{\sqrt{7}}, \text{ then } \frac{{cosec}^2 \theta - \sec^2 \theta}{{cosec}^2 \theta + \sec^2 \theta} =\] 


If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]


The value of cos 1° cos 2° cos 3° ..... cos 180° is 


\[\frac{2 \tan 30° }{1 + \tan^2 30°}\]  is equal to


The value of \[\frac{\tan 55°}{\cot 35°}\] + cot 1° cot 2° cot 3° .... cot 90°, is


If sin θ =7/25, where θ is an acute angle, find the value of cos θ.


A, B and C are interior angles of a triangle ABC. Show that

sin `(("B"+"C")/2) = cos  "A"/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×