Advertisements
Advertisements
प्रश्न
If 4 cos2 A – 3 = 0 and 0° ≤ A ≤ 90°, then prove that sin 3 A = 3 sin A – 4 sin3 A
उत्तर
4 cos2 A − 3 = 0
`cos A = sqrt(3)/2`
We know `cos 30^circ = sqrt(3)/2`
So, A = 30°
L.H.S. = sin 3A = sin 90° = 1
R.H.S. = 3 sin A – 4 sin3 A
= 3 sin 30° – 4 sin3 30°
= `3 xx 1/2 - 4 xx (1/2)^3` ...{∵ sin 30° = `1/2`}
= `3/2 - 4 xx 1/8`
= `3 /2 - 1/2`
= `2/2`
= 1
L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
Use tables to find the acute angle θ, if the value of tan θ is 0.7391
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
If 3 cos θ = 5 sin θ, then the value of
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.
`tan 47^circ/cot 43^circ` = 1