Advertisements
Advertisements
प्रश्न
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
उत्तर
`sintheta=3/5`
we know `sin theta="Opposite"/"Hypotunes"=p/h`
`therefore p/h=3/5` [∵ Opposite = Perpendicular = p]
p=3k, h=5k
Let the adjacent (base) side be b.
Thus `b=sqrt((5k)^2-(3k)^2)=4k`
`costheta=(4k)/(5k)=4/5`
APPEARS IN
संबंधित प्रश्न
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
solve.
sec2 18° - cot2 72°
Evaluate.
cos225° + cos265° - tan245°
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Evaluate:
cosec (65° + A) – sec (25° – A)
Evaluate:
`cos70^circ/(sin20^circ) + cos59^circ/(sin31^circ) - 8 sin^2 30^circ`
Use tables to find sine of 10° 20' + 20° 45'
Prove that:
sin (28° + A) = cos (62° – A)
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
Find A, if 0° ≤ A ≤ 90° and 2 cos2 A – 1 = 0
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Solve: 2cos2θ + sin θ - 2 = 0.
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?
If x and y are complementary angles, then ______.