Advertisements
Advertisements
प्रश्न
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
उत्तर
cos 45° = `1/sqrt(2)`
`(cos47^circ)/(sin43^circ) = (cos(90^circ - 43^circ))/(sin43^circ) = (sin43^circ)/(sin43^circ)` = 1 ...[cos (90 − θ) = sin θ]
`(sin72^circ)/(cos18^circ) = (cos(90^circ - 18^circ))/(cos18^circ) = (cos18^circ)/(cos18^circ)` = 1 ...[sin (90 − θ) = cos θ]
`((cos47^circ)/(sin43^circ))^2 + ((sin72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
= `1^2 + 1^2 - 2(1/sqrt(2))^2`
= `1 + 1 - 2(1/2)`
= 2 – 1
= 1
APPEARS IN
संबंधित प्रश्न
If the angle θ= –60º, find the value of cosθ.
Evaluate:
14 sin 30° + 6 cos 60° – 5 tan 45°
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
Write the value of tan 10° tan 15° tan 75° tan 80°?
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
The value of cos 1° cos 2° cos 3° ..... cos 180° is
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
If 5θ and 4θ are acute angles satisfying sin 5θ = cos 4θ, then 2 sin 3θ −\[\sqrt{3} \tan 3\theta\] is equal to
If sin 3A = cos 6A, then ∠A = ?