Advertisements
Advertisements
प्रश्न
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
उत्तर
cos 45° = `1/sqrt(2)`
`(cos47^circ)/(sin43^circ) = (cos(90^circ - 43^circ))/(sin43^circ) = (sin43^circ)/(sin43^circ)` = 1 ...[cos (90 − θ) = sin θ]
`(sin72^circ)/(cos18^circ) = (cos(90^circ - 18^circ))/(cos18^circ) = (cos18^circ)/(cos18^circ)` = 1 ...[sin (90 − θ) = cos θ]
`((cos47^circ)/(sin43^circ))^2 + ((sin72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
= `1^2 + 1^2 - 2(1/sqrt(2))^2`
= `1 + 1 - 2(1/2)`
= 2 – 1
= 1
APPEARS IN
संबंधित प्रश्न
Evaluate.
sin235° + sin255°
Evaluate.
`cot54^@/(tan36^@)+tan20^@/(cot70^@)-2`
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
If tanθ = 2, find the values of other trigonometric ratios.
Write the value of tan 10° tan 15° tan 75° tan 80°?
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
If sin θ + sin² θ = 1 then cos² θ + cos4 θ is equal ______.