Advertisements
Advertisements
प्रश्न
Write the value of tan 10° tan 15° tan 75° tan 80°?
उत्तर
We have to find: `tan10° tan 15° tan 75° tan 80°`
= `tan10° tan 15° tan 75° tan 80°`
=` tan (90°-80°) tan (90°-75°) tan 75° tan 80°`
=` cot 80° cot 75° tan 75° tan 80°`
= `(cot 75° tan 75°) (cot 80° tan 80°)`
[tan (90°-θ)=cotθ]
= `1xx1` `[cotθ. tan θ=1]`
=1
Hence the value of `tan10° tan 15° tan 75° tan 80°` is 1
APPEARS IN
संबंधित प्रश्न
Evaluate `(sin 18^@)/(cos 72^@)`
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
if `sin theta = 1/sqrt2` find all other trigonometric ratios of angle θ.
if `tan theta = 12/5` find the value of `(1 + sin theta)/(1 -sin theta)`
if `cosec A = sqrt2` find the value of `(2 sin^2 A + 3 cot^2 A)/(4(tan^2 A - cos^2 A))`
Solve.
`tan47/cot43`
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Use tables to find the acute angle θ, if the value of cos θ is 0.9848
If tanθ = 2, find the values of other trigonometric ratios.
If 5 tan θ − 4 = 0, then the value of \[\frac{5 \sin \theta - 4 \cos \theta}{5 \sin \theta + 4 \cos \theta}\] is:
If 8 tan x = 15, then sin x − cos x is equal to
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
The value of \[\frac{\cos^3 20°- \cos^3 70°}{\sin^3 70° - \sin^3 20°}\]
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
In ∆ABC, cos C = `12/13` and BC = 24, then AC = ?
If x and y are complementary angles, then ______.