मराठी

If θ is an Acute Angle Such that Tan 2 θ = 8 7 Then the Value of ( 1 + Sin θ ) ( 1 − Sin θ ) ( 1 + Cos θ ) ( 1 − Cos θ ) - Mathematics

Advertisements
Advertisements

प्रश्न

If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]

पर्याय

  • \[\frac{7}{8}\]

  • \[\frac{8}{7}\]

  • \[\frac{7}{4}\]

  • \[\frac{64}{49}\]

MCQ

उत्तर

Given that:  `tan^2 θ=8/7` and θis an acute angle

We have to find the following expression  `((1+sinθ)(1-sin θ))/((1+cos θ)(1-cos θ))`

Since 

`tan^2θ=8/7` 

`tan θ=sqrt(8/7)` 

`tan θ=sqrt8/sqrt7` 

Since `tan θ="perpendiular"/"Base"` 

⇒ `"Perpendicular"=sqrt8` 

⇒ `"Base"=sqrt7` 

⇒ `"Hypotenuse"
= sqrt(8+7)` 

⇒ `"Hypotenuse"=sqrt15` 

We know that  `sinθ= "Perpendicular"/"Hypotenuse" and cos θ="Base"/"Hypotenuse"` 

We find:

`((1+sinθ )(1-sin θ))/((1+cos θ)(1-cosθ))` 

=`((1+sqrt8/sqrt15)(1-sqrt8/sqrt15))/((1+sqrt7/sqrt15)(1-sqrt7/sqrt15))`

=`((1-8/15))/((1-7/15))`

=`(7/15)/(8/15)` 

=`7/8` 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.5 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.5 | Q 8 | पृष्ठ ५७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Without using trigonometric tables, evaluate the following:

`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`


Prove the following trigonometric identities.

(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1


if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`


Evaluate.
cos225° + cos265° - tan245°


Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`


Show that : sin 42° sec 48° + cos 42° cosec 48° = 2


Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°


Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`


Use tables to find sine of 34° 42'


Evaluate:

3 cos 80° cosec 10° + 2 cos 59° cosec 31°


If A and B are complementary angles, prove that:

cosec2 A + cosec2 B = cosec2 A cosec2 B


What is the maximum value of \[\frac{1}{\sec \theta}\]


If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\] 


If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to 


Prove that:

\[\frac{sin\theta  \cos(90°  - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta  \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]


Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2


A, B and C are interior angles of a triangle ABC. Show that

sin `(("B"+"C")/2) = cos  "A"/2`


A, B and C are interior angles of a triangle ABC. Show that

If ∠A = 90°, then find the value of tan`(("B+C")/2)`


Express the following in term of angles between 0° and 45° :

cos 74° + sec 67°


If sec A + tan A = x, then sec A = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×