Advertisements
Advertisements
प्रश्न
If θ is an acute angle such that \[\tan^2 \theta = \frac{8}{7}\] then the value of \[\frac{\left( 1 + \sin \theta \right) \left( 1 - \sin \theta \right)}{\left( 1 + \cos \theta \right) \left( 1 - \cos \theta \right)}\]
पर्याय
\[\frac{7}{8}\]
\[\frac{8}{7}\]
\[\frac{7}{4}\]
\[\frac{64}{49}\]
उत्तर
Given that: `tan^2 θ=8/7` and θis an acute angle
We have to find the following expression `((1+sinθ)(1-sin θ))/((1+cos θ)(1-cos θ))`
Since
`tan^2θ=8/7`
`tan θ=sqrt(8/7)`
`tan θ=sqrt8/sqrt7`
Since `tan θ="perpendiular"/"Base"`
⇒ `"Perpendicular"=sqrt8`
⇒ `"Base"=sqrt7`
⇒ `"Hypotenuse"
= sqrt(8+7)`
⇒ `"Hypotenuse"=sqrt15`
We know that `sinθ= "Perpendicular"/"Hypotenuse" and cos θ="Base"/"Hypotenuse"`
We find:
`((1+sinθ )(1-sin θ))/((1+cos θ)(1-cosθ))`
=`((1+sqrt8/sqrt15)(1-sqrt8/sqrt15))/((1+sqrt7/sqrt15)(1-sqrt7/sqrt15))`
=`((1-8/15))/((1-7/15))`
=`(7/15)/(8/15)`
=`7/8`
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate the following:
`(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }`
Prove the following trigonometric identities.
(cosecA − sinA) (secA − cosA) (tanA + cotA) = 1
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
Evaluate.
cos225° + cos265° - tan245°
Evaluate.
`(cos^2 32^@+cos^2 58^@)/(sin^2 59^@+sin^2 31^@)`
Show that : sin 42° sec 48° + cos 42° cosec 48° = 2
Find the value of x, if sin x = sin 60° cos 30° – cos 60° sin 30°
Find the value of x, if tan x = `(tan60^circ - tan30^circ)/(1 + tan60^circ tan30^circ)`
Use tables to find sine of 34° 42'
Evaluate:
3 cos 80° cosec 10° + 2 cos 59° cosec 31°
If A and B are complementary angles, prove that:
cosec2 A + cosec2 B = cosec2 A cosec2 B
What is the maximum value of \[\frac{1}{\sec \theta}\]
If A + B = 90°, then \[\frac{\tan A \tan B + \tan A \cot B}{\sin A \sec B} - \frac{\sin^2 B}{\cos^2 A}\]
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
Prove that:
\[\frac{sin\theta \cos(90° - \theta)cos\theta}{\sin(90° - \theta)} + \frac{cos\theta \sin(90° - \theta)sin\theta}{\cos(90° - \theta)}\]
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
If sec A + tan A = x, then sec A = ______.