Advertisements
Advertisements
प्रश्न
If 3 cos θ = 5 sin θ, then the value of
पर्याय
\[\frac{271}{979}\]
\[\frac{316}{2937}\]
\[\frac{542}{2937}\]
None of these
उत्तर
`bb(271/979)`
We have,
`3 cos θ=5 sin θ`
So we can manipulate it as,
`tan θ=3/5`
So now we can get the values of other trigonometric ratios,
`sin θ=3/sqrt34`
`cos θ=5/sqrt34`
`sec θ=sqrt34/5`
So now we will put these values in the equation,
=`( 5 sin θ-2 sec^3 θ+2 cos θ)/(5 sin θ-2 sec^3 θ-2 cos θ)`
`=(5(3/sqrt34)-2((34sqrt34)/125)+10/sqrt34)/(5(3/sqrt34)+2((34sqrt34)/125)-10/sqrt34)`
`=((15)(125)-(2)(34)^2+1250)/((15)(125)+(2)(34)^2-1250)`
`= (1875 - 2312 + 1250)/(1875 + 2312 - 1250)`
`= 813/2937`
`=271/979`
APPEARS IN
संबंधित प्रश्न
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`
Evaluate:
3cos80° cosec10° + 2 sin59° sec31°
Find the value of x, if sin 3x = 2 sin 30° cos 30°
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find the acute angle θ, if the value of cos θ is 0.9574
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Find A, if 0° ≤ A ≤ 90° and cos2 A – cos A = 0
If the angle θ = –45° , find the value of tan θ.
If \[\sec\theta = \frac{13}{12}\], find the values of other trigonometric ratios.
If 16 cot x = 12, then \[\frac{\sin x - \cos x}{\sin x + \cos x}\]
If angles A, B, C to a ∆ABC from an increasing AP, then sin B =
Prove that :
tan5° tan25° tan30° tan65° tan85° = \[\frac{1}{\sqrt{3}}\]
A, B and C are interior angles of a triangle ABC. Show that
If ∠A = 90°, then find the value of tan`(("B+C")/2)`
Evaluate: cos2 25° - sin2 65° - tan2 45°
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.
Solve: 2cos2θ + sin θ - 2 = 0.
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.