Advertisements
Advertisements
प्रश्न
If the angle θ = –45° , find the value of tan θ.
उत्तर
We know, tan(−θ) = −tanθ
45° = 1
When θ = –45°,
tan(−45°) = −tan45° = −1
APPEARS IN
संबंधित प्रश्न
If the angle θ= –60º, find the value of cosθ.
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
solve.
sec2 18° - cot2 72°
Solve.
sin42° sin48° - cos42° cos48°
Express the following in terms of angles between 0° and 45°:
cosec68° + cot72°
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Evaluate:
cosec (65° + A) – sec (25° – A)
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Use tables to find cosine of 2° 4’
Evaluate:
`sec26^@ sin64^@ + (cosec33^@)/sec57^@`
If 3 cot θ = 4, find the value of \[\frac{4 \cos \theta - \sin \theta}{2 \cos \theta + \sin \theta}\]
If A + B = 90° and \[\cos B = \frac{3}{5}\] what is the value of sin A?
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
If θ and 2θ − 45° are acute angles such that sin θ = cos (2θ − 45°), then tan θ is equal to
Sin 2A = 2 sin A is true when A =
Express the following in term of angles between 0° and 45° :
cos 74° + sec 67°
Sin 2B = 2 sin B is true when B is equal to ______.