Advertisements
Advertisements
प्रश्न
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
उत्तर
Since, ABC is a right angled triangle, right angled at B.
So, A + C = 90°
`(secA.cosecC - tanA.cotC)/sinB`
= `(sec(90^circ - C).cosecC - tan(90^circ - C).cotC)/sin90^circ`
= `(cosecC.cosecC - cotC.cotC)/1`
= 1 ...[∵ cosec2θ – cot2θ = 1]
APPEARS IN
संबंधित प्रश्न
If the angle θ = -60° , find the value of sinθ .
Evaluate.
sin235° + sin255°
Evaluate.
`(2tan53^@)/(cot37^@)-cot80^@/tan10^@`
Evaluate.
`cos^2 26^@+cos65^@sin26^@+tan36^@/cot54^@`
Use tables to find sine of 21°
If the angle θ = –45° , find the value of tan θ.
Write the maximum and minimum values of cos θ.
The value of cos 1° cos 2° cos 3° ..... cos 180° is
In the following figure the value of cos ϕ is
A, B and C are interior angles of a triangle ABC. Show that
sin `(("B"+"C")/2) = cos "A"/2`