Advertisements
Advertisements
प्रश्न
If the angle θ= –60º, find the value of cosθ.
उत्तर
We know that,
cos(-α) = cosα
∴ cos(-60°) = cos60°
∴ cos(-60°) = 1/2
∴ cos(-60°) = cosθ = 1/2
∴ cosθ = 1/2
APPEARS IN
संबंधित प्रश्न
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
Show that cos 38° cos 52° − sin 38° sin 52° = 0
Without using trigonometric tables evaluate:
`(sin 65^@)/(cos 25^@) + (cos 32^@)/(sin 58^@) - sin 28^2. sec 62^@ + cosec^2 30^@`
Prove the following trigonometric identities.
`((1 + cot^2 theta) tan theta)/sec^2 theta = cot theta`
if `cos theta = 4/5` find all other trigonometric ratios of angles θ
solve.
sec2 18° - cot2 72°
Solve.
sin42° sin48° - cos42° cos48°
Express the following in terms of angle between 0° and 45°:
sin 59° + tan 63°
Evaluate:
`2 tan57^circ/(cot33^circ) - cot70^circ/(tan20^circ) - sqrt(2) cos45^circ`
Use tables to find sine of 62° 57'
Use tables to find cosine of 8° 12’
Use tables to find cosine of 26° 32’
Use trigonometrical tables to find tangent of 37°
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Write the maximum and minimum values of sin θ.
If 3 cos θ = 5 sin θ, then the value of
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
If sin 3A = cos 6A, then ∠A = ?
The value of the expression (cos2 23° – sin2 67°) is positive.