Advertisements
Advertisements
प्रश्न
If tan 2A = cot (A – 18°), where 2A is an acute angle, find the value of A
उत्तर
tan 2A = cot (A – 18°)
cot (90° – 2A) = cot (A – 18°)
(∵ cot (90° – θ) = tan θ)
90° – 2A = A – 18°
3A = 108°
A = 36°
APPEARS IN
संबंधित प्रश्न
If `cosθ=1/sqrt(2)`, where θ is an acute angle, then find the value of sinθ.
`(\text{i})\text{ }\frac{\cot 54^\text{o}}{\tan36^\text{o}}+\frac{\tan 20^\text{o}}{\cot 70^\text{o}}-2`
If A, B, C are the interior angles of a triangle ABC, prove that `\tan \frac{B+C}{2}=\cot \frac{A}{2}`
Express the following in terms of angles between 0° and 45°:
cos74° + sec67°
Find the value of x, if cos (2x – 6) = cos2 30° – cos2 60°
Find the value of angle A, where 0° ≤ A ≤ 90°.
cos (90° – A) . sec 77° = 1
Use tables to find sine of 10° 20' + 20° 45'
Use trigonometrical tables to find tangent of 17° 27'
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
Prove that:
tan (55° - A) - cot (35° + A)
Prove that:
sec (70° – θ) = cosec (20° + θ)
Write the maximum and minimum values of cos θ.
What is the maximum value of \[\frac{1}{\sec \theta}\]
If θ is an acute angle such that \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\] \[\cos \theta = \frac{3}{5}, \text{ then } \frac{\sin \theta \tan \theta - 1}{2 \tan^2 \theta} =\]
Sin 2A = 2 sin A is true when A =
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° - 3A).cosec 42° = 1.
Find the value of the following:
`((cos 47^circ)/(sin 43^circ))^2 + ((sin 72^circ)/(cos 18^circ))^2 - 2cos^2 45^circ`
The value of tan 72° tan 18° is
If x tan 45° sin 30° = cos 30° tan 30°, then x is equal to ______.