Advertisements
Advertisements
प्रश्न
Prove that:
tan (55° - A) - cot (35° + A)
उत्तर
tan (55° - A) - cot (35° + A)
= tan [90° - (55° - A)] - cot (35° + A)
= cot (90° - 55° + A) - cot (35° + A)
= cot (35° + A) - cot (35° + A)
= 0
APPEARS IN
संबंधित प्रश्न
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
What is the maximum value of \[\frac{1}{\sec \theta}\]
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
Evaluate: 14 sin 30°+ 6 cos 60°- 5 tan 45°.
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?
Prove that `"tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")`
In ∆ABC, `sqrt(2)` AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?