Advertisements
Advertisements
प्रश्न
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
उत्तर
Given in question:
`A+B=90°`
tan `A=3/4`
`A+B=90°`
⇒` B=90°-A`
⇒ `Cot B= cot(90°-A)`
⇒` Cot B= tan A`
⇒ `Cot B=3/4[cot (90°-A)=tan A]`
Hence the value of cot B is `3/4`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
(cosecθ + sinθ) (cosecθ − sinθ) = cot2 θ + cos2θ
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
Solve.
`tan47/cot43`
Evaluate.
cos225° + cos265° - tan245°
Show that : `sin26^circ/sec64^circ + cos26^circ/(cosec64^circ) = 1`
Evaluate:
cosec (65° + A) – sec (25° – A)
Find the value of x, if sin 2x = 2 sin 45° cos 45°
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Use tables to find the acute angle θ, if the value of cos θ is 0.6885
Use tables to find the acute angle θ, if the value of tan θ is 0.2419
Evaluate:
`2(tan35^@/cot55^@)^2 + (cot55^@/tan35^@)^2 - 3(sec40^@/(cosec50^@))`
If A and B are complementary angles, prove that:
cot B + cos B = sec A cos B (1 + sin B)
If tanθ = 2, find the values of other trigonometric ratios.
∠ACD is an exterior angle of Δ ABC. If ∠B = 40o, ∠A = 70o find ∠ACD.
If A and B are complementary angles, then
If x tan 45° cos 60° = sin 60° cot 60°, then x is equal to
If sin θ =7/25, where θ is an acute angle, find the value of cos θ.
In the case, given below, find the value of angle A, where 0° ≤ A ≤ 90°.
cos(90° - A) · sec 77° = 1
Find the value of the following:
tan 15° tan 30° tan 45° tan 60° tan 75°
If y sin 45° cos 45° = tan2 45° – cos2 30°, then y = ______.