Advertisements
Advertisements
प्रश्न
if `3 cos theta = 1`, find the value of `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
उत्तर
Given `3 cos theta = 1`
We have to find the value of the expression `(6 sin^2 theta + tan^2 theta)/(4 cos theta)`
We have
`3 cos theta = 1`
`=> cos theta = 1/3`
`sin theta = sqrt(1 - cos^2 theta) = sqrt(1- (1/3)^3) = sqrt8/3`
`tan theta = sin theta/cos theta = (sqrt8/3)/(1/3) = sqrt8`
Therefore,
`(6 sin^2 theta + tan^2 theta)/(4 cos theta) = (6 xx (sqrt8/3)^2 + (sqrt8)^2)/(4 xx 1/3)`
= 10
Hence, the value of the expression is 10.
APPEARS IN
संबंधित प्रश्न
solve.
sec2 18° - cot2 72°
Evaluate:
`sin80^circ/(cos10^circ) + sin59^circ sec31^circ`
Evaluate:
14 sin 30° + 6 cos 60° – 5 tan 45°
Find the value of angle A, where 0° ≤ A ≤ 90°.
sin (90° – 3A) . cosec 42° = 1
Find the value of angle A, where 0° ≤ A ≤ 90°.
cos (90° – A) . sec 77° = 1
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
Use tables to find cosine of 8° 12’
Use tables to find the acute angle θ, if the value of sin θ is 0.4848
Use tables to find the acute angle θ, if the value of tan θ is 0.4741
Evaluate:
cos 40° cosec 50° + sin 50° sec 40°
If \[\tan A = \frac{3}{4} \text{ and } A + B = 90°\] then what is the value of cot B?
If 8 tan x = 15, then sin x − cos x is equal to
If tan2 45° − cos2 30° = x sin 45° cos 45°, then x =
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°
Evaluate: `2(tan57°)/(cot33°) - (cot70°)/(tan20°) - sqrt(2) cos 45°`
Solve: 2cos2θ + sin θ - 2 = 0.
Find the value of the following:
`cot theta/(tan(90^circ - theta)) + (cos(90^circ - theta) tantheta sec(90^circ - theta))/(sin(90^circ - theta)cot(90^circ - theta)"cosec"(90^circ - theta))`
Choose the correct alternative:
If ∠A = 30°, then tan 2A = ?
If tan θ = 1, then sin θ . cos θ = ?