Advertisements
Advertisements
प्रश्न
Prove that:
(sin θ + 1 + cos θ) (sin θ − 1 + cos θ) . sec θ cosec θ = 2
उत्तर
LHS = (sinθ + 1 + cosθ)(sinθ − 1 + cosθ). secθcosecθ
= [sin2θ − sinθ + sinθcosθ + sinθ − 1 + cosθ + sinθcosθ − cosθ + cos2θ] `1/cosθ1/sinθ ` ...(∵ secθ = `1/cosθ and cosecθ = 1/sinθ`)
= [1 + 2sinθcosθ − 1]`1/cosθ 1/sinθ`
= [2sinθcosθ]`1/cosθ1/sinθ`
= 2 = RHS
Hence proved.
संबंधित प्रश्न
If sin θ =3/5, where θ is an acute angle, find the value of cos θ.
if `tan theta = 1/sqrt2` find the value of `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + cot^2 theta)`
if `cot theta = 1/sqrt3` find the value of `(1 - cos^2 theta)/(2 - sin^2 theta)`
Evaluate:
tan(55° - A) - cot(35° + A)
Evaluate:
`(cot^2 41^circ)/(tan^2 49^circ) - 2 sin^2 75^circ/cos^2 15^circ`
A triangle ABC is right angles at B; find the value of`(secA.cosecC - tanA.cotC)/sinB`
Use tables to find cosine of 65° 41’
Use tables to find the acute angle θ, if the value of sin θ is 0.6525
Evaluate:
`(5sin66^@)/(cos24^@) - (2cot85^@)/(tan5^@)`
Prove that:
`1/(1 + sin(90^@ - A)) + 1/(1 - sin(90^@ - A)) = 2sec^2(90^@ - A)`
What is the maximum value of \[\frac{1}{\sec \theta}\]
If \[\frac{x {cosec}^2 30°\sec^2 45°}{8 \cos^2 45° \sin^2 60°} = \tan^2 60° - \tan^2 30°\]
The value of tan 1° tan 2° tan 3° ...... tan 89° is
If A, B and C are interior angles of a triangle ABC, then \[\sin \left( \frac{B + C}{2} \right) =\]
Evaluate: `(cot^2 41°)/(tan^2 49°) - 2 (sin^2 75°)/(cos^2 15°)`
The value of cosec(70° + θ) – sec(20° − θ) + tan(65° + θ) – cot(25° − θ) is
If tan θ = 1, then sin θ . cos θ = ?
If cot( 90 – A ) = 1, then ∠A = ?
`tan 47^circ/cot 43^circ` = 1